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TURBULENT FLOW IN A TUBE CONTAINING 
AN OFFSET ROD 

C. W. RAPLEY 

Department of Mechanical Engineering, Sunderland Polytechnic, Chester Road, Sunderland, U.K.  

SUMMARY 

A numerical finite volume prediction method for arbitrary-shaped passages has been applied to the case of 
fully developed axial turbulent flow past a rod eccentrically placed in a circular tube. The numerical method 
was based on an orthogonal curvilinear mesh and employed an algebraic stress transport model to calculate 
the full three-dimensional velocity field directly from the governing partial differential equations. This study is 
one of a series of applications of this prediction method to a range of different non-circular passages that have 
been made in order to establish the capabilities and usefulness of this type of procedure. The present eccentric 
rod case was the subject of a comprehensive experimental investigation by Kacker' which has enabled a 
detailed comparison to be made between the present predictions and the measurements. This comparison 
included local distributions of axial velocity, wall shear stress and secondary velocities; and although found to 
be satisfactory overall, some differences in detail revealed possible shortcomings in the measurement of 
secondary flow. This, together with other previously reported cases, indicates, that, although the present 
method cannot be expected to replace experiment in providing turbulent passage flow data, it has an 
important role to play in interpreting and supplementing experiments. 
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INTRODUCTION 

Computer-based numerical methods of solving the governing partial differential equations of 
recirculating turbulent flow have been available now for well over a decade. The most recent work 
has tackled the more complex three-dimensional flows where turbulent viscosity based stress 
models become inadequate. Fully developed turbulent non-circular passage flows are an example 
of such three-dimensional flows, since the complex stress field gives rise to cross-plane secondary 
flow circulations which causes a spiralling type flow through the passage. The isotropic turbulent 
viscosity stress model, be it based on zero-, one- or  two-equation turbulence models, cannot be 
used, since with it stress is directly linked to co-planar strain rates and thus, as with laminar fully 
developed flow, no cross-plane stresses or flows are predicted and the solution remains just two- 
dimensional. 

The general circulation pattern of the turbulence-driven cross-plane flows has been established 
from experimental as being from the core towards the corners of the duct, recirculating 
to the core along a path initially parallel to the walls. Typical measured circulation patterns are 
shown diagrammatically in Figure 1 for three different passages. The secondary velocities were 
found to be of the order of 1% to 2% of the mean axial velocity, with the maximum velocities being 
found along the corner bisectors and near the wall. This pattern of cross-plane secondary flow, 
which can be generalized as from the region of highest axial velocity (core) towards the region of 
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(a) Square duct * (b) Equilateral ( c )  Rod bundle channel4 
triangular duct P/D= 1.06 

Figure 1 Measured secondary flow circulations 

lowest axial velocity (corner regions), is characteristic of turbulence-driven secondary motion in 
non-circular  passage^.^ The convective effects of this motion on local axial velocity distributions 
are to generally reduce the axial velocity level in the core and increase it in the corner regions. This 
leads to another characteristic effect, that of increased wall shear in the corner region where it is 
lowest and decreased wall shear further away from the corner where it is highest to give a more even 
distribution of wall shear stress than would be expected with no secondary motions. Thus 
secondary motions act to make the mean flow more evenly distributed. 

The early computer-based numerical calculation methods for non-circular passages were simply 
two-dimensional with secondary flows ignored and stresses calculated with isotropic turbulent 
viscosity based  model^.^.^ However, these methods were found to be little improvement on the 
earlier graphical methods of such as Deissler and where errors of up to 100% were found 
in predictions of local axial velocity or wall shear stress when compared with experiment. It thus 
became apparent that, although very small when compared with the axial velocity, the convective 
transport effects of these cross-plane secondary motions on local mean flow were significant and 
could not be ignored. Some attempts were made, with varying degrees of success, to allow for the 
effects of secondary flow by methods such as prescribed wall shear stress distributions,'O prescribed 
anisotropic turbulent or prescribed elementary secondary flow circulations. l3-I5 
All of these methods were inevitably limited to particular passage shapes and flow conditions and 
were dominated by the various prescriptions made. 

The pioneer work on numerical computer-based solutions of the full three-dimensional velocity 
field from the governing partial differential equations was made by Launder and Ying"' in a study 
of fully developed square duct flows using a finite volume method based on the turbulent 
recirculating flow numerical technique of Gosman et ~ 1 . ' ~  The failure of the isotropic turbulent 
viscosity based stress model to predict secondary flow meant that a higher-order stress model was 
needed. This invariably means solution of a partial differential Reynolds stress transport equation 
for each stress required and results in a complex computer CPU time-consuming mu1 ti-equation 
stress model. However, Launder and Ying were the first to recognize that the stress transport 
equations could be usefully simplified in the non-circular duct case where, due to the relatively 
small size of secondary velocities, convective transport effects on the stresses could be neglected as a 
first approximation. This, together with other simplifications (briefly summarized in Rapley 18), led 
to elimination of all terms containing stress gradients and reduced the stress transport equations to 
a form from which the cross-plane stresses could be extracted as explicit algebraic relations. Axial 
plane stresses were calculated with an isotropic turbulent viscosity stress model based on a one- 
equation turbulence model, with turbulence kinetic energy k obtained from solution of its modelled 
partial differential transport equation and length scales calculated from the geometric formula of 
Buleev. 

The square duct results obtained by Launder and Ying were encouraging in that the secondary 
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flows generated were of the pattern expected from experiments (see Figure 1) and gave predictions 
of local mean flow closer to experiment than previous methods which ignored or only 
approximately accounted for secondary flows. 

This success gave rise to a number of further applications of the one-equation method of Launder 
and Ying, including those for rod bundle passages by Carajilescov and Todreas2O and Trupp and 
AlyZ1 and for an equilateral triangular duct by Aly et aL3 The predictions were once again found to 
be encouraging, although in most cases significant simplifications to the method were needed to 
obtain acceptable results. These simplifications included the neglect of cross-plane shear and 
prescription of the direction of circulation of the secondary flows generated. 

The Launder and Ying algebraic stress transport model was further analysed by Gessner and 
Emery,22 who showed that algebraic relations for the axial plane stresses could also be obtained 
from the simplified stress transport equations. These relations turned out to be similar in form to 
the isotropic turbulent viscosity relations assumed by Launder and Ying. This gave a set of 
consistant algebraic relations in which all six (kinematic) components of the stress tensor are 
explicitly related to the turbulence kinetic energy, k, its dissipation rate E and gradients of axial 
velocity (Cartesian co-ordinates with directions 1 and 2 in the cross-plane and 3 in the axial 
direction): 

- 
uf2 - 
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where C,, C,, C, and C ,  are related coefficients. 

strain rates in a turbulent viscosity type model, where 

~ ~ 

The axial plane (kinematic) shear stresses u; u j  and u;uj are seen to be related to co-planar axial 

turbulent viscosity pLt = C,k2/&. (2) 
_ _  ~ 

In contrast, the cross-plane kinematic stresses u;” u;“ and u; u; are seen to be related to axial strain 
rates, implying a plausible cause-and-effect connection between these strain rates and cross-plane 
secondary flow. 

This algebraic stress transport model was used by Gosman and Ra~ ley , ’~  who reported 
preliminary results from the present finite volume calculation method which was being developed 
for fully developed turbulent flow in arbitrary-shaped passages. The method was based on an or- 
thogonal curvilinear mesh which was generated to fit the duct cross-section and employed the k - E 

two-equation turbulence model to calculate the values of k and E required in the stress model. The 
potential of this method was demonstrated with the prediction of the triple symmetry of secondary 
flow obtaining in an equilateral triangular half-duct. Since then the results of further development 
and applications of the method have been r e p ~ r t e d ’ ~ , ~ ~ - ’ ~  leading to the present application to the 
case of an offset rod in a circular duct. This case represents a useful two-surface non-circular 
passage which is a single-rod limiting case of a parallel rod bundle in a casing as well as a particular 
case of an eccentric annulus. For these and other reasons it was selected as the subject of a detailed 
experimental study by Kacker’ and also by the present author as a suitable and interesting case on 
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which to further test the capabilities and usefulness of the prediction procedure. The present study 
appears to be the first reported application of a turbulent flow prediction method to this case. 

The experiments of Kacker were done with air flow in a circular tube 5.683 inches in diameter, 
containing an eccentric rod 1.0 inch in diameter located at a radius of 1.1 13 inches from the tube 
centre-line. The tube length was 67 equivalent diameters, and axial velocity measurements were 
made with a double Pitot tube. A boundary layer fence was used for wall shear stress 
measurements, and secondary velocities were measured with a hot wire anemometer. The velocity 
probes were introduced into the flow through the tube wall, and most of the measurements 
presented were for a mean Reynolds number of 2.15 x lo5, based on equivalent (hydraulic) 
diameter. No local turbulence intensity or Reynolds stress measurements were reported. 

THE GOVERNING EQUATIONS 

The Reynolds equations for steady incompressible turbulent flow were specia1ize)d for fully 
developed flow in straight passages. The Reynolds stresses appearing in these equations were 
calculated with the algebraic relations given in equations (1). The values of turbulence kinetic 
energy k and its dissipation rate E required in these equations were calculated from their partial 
differential transport equations, in the form normally employed in the widely we'd k--E two- 
equations turbulence model. 

All these equations were transformed to general orthogonal co-ordinate form using the method 
of Pope2' and then specialized to fully developed flow in straight ducts. Details of the resulting 
equations can be found e l s e ~ h e r e , ~ ~ ' ' , ~ ~  and it is sufficient here to note that the governing 
transport equations can be written in the following common form: 

d(hzPl#) /dr l+ (hlP,rb) /a t2  = a ( h 2 R & / ~ l ~ t l ) / a t ,  + d(h,D<@4/h,~t,)/X, + s,, (3) 
where 4 stands for any of the main variables u , ,  uz,  u3,  k and E ,  D, is the exchange coefficient and S ,  
is the source, which is also a receptacle for all the terms not appearing in the remainder of the 
equation. The full forms of D, and S ,  for each main variable can be found in Table 5.3.1 of 
Reference 5 or Table 3 of Reference 25. Co-ordinates 5 ,  and t2 are in the cross-plane with metric 
coefficients k, and h2 and radii of curvature rl  and r2 respectively, as illustrated in Figure 2. 

The boundary conditions used were entirely conventional, with wall functions employed to 
cover the region next to the wall. These functions. were based on the assumption of one- 
dimensional flow in turbulence equilibrium, which led to equations based on the well known 
logarithmic velocity law. The equations obtained for the wall functions for each ma.in variable 
are given in Reference 25, with full details of their implementation given in Reference 5. 

The values of the various constants and coefficients appearing in the governing equations are 
identical to those used in previous applications of the present and no attempt 
was made to 'tune' them to the present problem. 

Figure 2. Cross-plane co-ordinate system 
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THE SOLUTION PROCEDURE 

The finite volume solution method used was based on a mesh which was orthogonal curvilinear in 
the cross-plane as illustrated by the typical portion shown in Figure 3 (full lines), which also shows 
the cross-plane boundaries of the contiguous control volumes surrounding each main node. These 
boundary planes, denoted by broken lines, are placed mid-way between the grid lines. A staggered 
mesh arrangement was used for the cross-plane velocities, as is usually found necessary for stability 
of recirculating flow calculation  procedure^.'^ Further details of the mesh arrangement are given 
elsewhere. 5,2  

The finite volume equivalent of equation (3) was obtained by the micro-integration technique. 
This led to finite volume equations of the conventional five-point form with coefficients that 
contained the combined effects of diffusion and convection according to a standard hybrid 
differencing scheme, which was essentially central differencing with the provision to switch to 
upwind when convection dominated-see Reference 5 for details. 

The cross-plane continuity equation was manipulated into an equation for pressure correction, 
and the ‘SIMPLE procedurez9 was used for solution of the cross-plane equations. The finite 
volume equations were solved using an iterative line-by-line AD1 solver based on the tridiagonal 
matrix algorithm. 

An orthogonal curvilinear cross-plane mesh was generated in this case from two intersecting 
families of circular arcs, with one family centred on an axis through the duct and rod centre-plane 
and the other family centred on an axis normal to this but outside the duct. The grid points of a 
typical orthogonal mesh generated this way are shown in Figure 3. From symmetry only one half 
of the duct needed to be considered. 

Convergence of the solution was found to be uncertain, due mainly to the coupling and non- 
linearity of the equations solved. As mentioned earlier, this difficulty was experienced by previous 
workers, who, with fewer equations to solve, found it necessary to simplify the equations and/or 
prescribe the circulation direction of secondary flow in order to obtain satisfactory convergence. 
However, in the present work no simplifications were made, as convergence was obtained through 
careful linearization of all source terms, the use of block adjustment, under-relaxation and 
extensive program control. The convergence criterion used was the reduction of the sum of the 
absolute residuals across the field below a certain prescribed fraction of the axial flux, below which 
the solution obtained did not significantly change. Typically this fraction was for axial 
momentum and for cross-plane momentum. 

Extensive numerical accuracy tests were made on the procedure, concentrating particularly on 

Figure 3. Orthogonal mesh and grid nodes in the cross-plane 
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the effects of the mesh control volume shape, size and orientation. These tests included 
comparisons between solutions obtained for particular passage shapes with different meshes, 
comparison of laminar flow calculations with known analytical solutions, grid refinement and 
symmetry tests. Examples of the results of these tests are given in References 24, and 25, with full 
details available in Reference 5. 

RESULTS AND COMPARISONS 

The predicted secondary flow, in the form of cross-plane secondary velocity vectors, is shown in 
Figure 4. Two main counter-flowing circulations are evident in the half-duct, which indicates flow 
from the core towards the gap, along the region around the bisecting plane between the inner and 
outer surfaces, recirculating to the core via the near surface regions and planes normal to the 
surfaces through the core. This is entirely consistent with the secondary flow circulations measured 
and calculated in other non-circular passages, which as mentioned earlier, are from the region of 
highest axial velocity towards the region of lowest axial velocity, returning via the wall regions. 

However, this prediction does not agree with the measurements of Kacker,' who obtained only 
one circulation as seen from his experimental secondary flow streamlines given in Figure 5. It 
follows that this measured flow pattern also does not agree with the expected flow pattern based on 
the characteristic pattern of secondary motions expected in non-circular passages from previous 
measurements. The main difference is the absence in the measurements of a second, counter- 

Figure 4. Predicted secondary velocity vectors, Re = 2.15 x lo5 

Figure 5. Measured secondary flow streamlines,' Re = 2.15 x lo5 



TURBULENT FLOW IN A TUBE 31 1 

rotating circulation in the region next to the outer tube wall. If this missing circulation was present, 
it would give the expected secondary motion, namely, from the core towards the gap, along the 
region around the bisecting plane between the two surfaces, dividing in the gap region to 
recirculate to the core via the two wall regions-as in the present predictions. It could be that this 
missing circulation was actually there but undetected in the measurements. 

A detailed comparison of secondary velocities is given in Figure 6, which shows profiles of the 
tangential components of secondary velocity (normalized with friction velocity Uzmax) at various 
angular positions. The calculated profiles compare quite well with the measurements, considering 
the small size of the velocities, except at the lower values of ‘b’ (i.e., the ‘missing circulation region’), 
where little or no secondary motion was measured. However, in most cases the measured profiles 
are such that extrapolations into this region to give possible undetected positive velocities are quite 
feasible. It may be that the presence of the probe body near the wall (the probe was introduced 
through the tube wall) in this region made measurements there more uncertain. 

Predicted axial velocity contours are compared with the measurements in Figure 7 and show 
reasonable agreement considering the interpolations involved in both plots. The convective effects 
of secondary motions are clearly evident, with contours bulging well towards the gap. Figure 8 
focuses on the duct centre-plane gap and core axial velocity profiles and shows good agreement 
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between the predictions and the measurements except for a slight overprediction of the 

Figure 6. Secondary velocity profiles, Re = 2.15 x lo5 
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Figure 7. Axial velocity contours, Re = 2.15 x lo5 
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Figure 8. Axial velocity 
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Figure 9. Wall shear stress profiles, Re = 2.15 x lo5 

velocity on the rod side of the core. The convective effects of secondary flow are highlighted here by 
including profiles calculated with secondary motion suppressed. This shows clearly the expected 
reduced core velocities and increased gap velocities caused by the convective transport effects of 
secondary flow from the core towards the gap. The good agreement in the gap region implies that 
the secondary flow convection effect shown in the prediction is valid and provides more evidence 
that some of this cross-plane convection was there but not recorded in the measurt:ments. 

Wall shear stress profiles are plotted in Figure 9 and show the predictions to follow the general 
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Figure 10. Friction factor characteristics 

trends of the measurements but with slightly more variation. The profiles plotted from the 
calculations made with secondary flow suppressed indicate the considerable reduction in wall 
shear variation caused by secondary flow, as may be expected from previous studies of such effects 
in non-circular passages and mentioned earlier in this study. From these previous studies and also 
in the present study, this reduction in peripheral variation is due to secondary convection towards 
the wall increasing wall shear stress in regions of low wall shear (gap) and secondary convection 
away from the wall decreasing wall shear stress in regions of high wall shear (core)-see Figure 4. 
This secondary motion has occurred in both the measurements and predictions for the rod surface, 
but is missing from the measurements for the tube surface although it is present in the predictions. 
However, the relatively high wall shear stress measurements on the tube surface in the gap region 
contradict this absence and indeed imply even more secondary convection towards the wall there 
than in the predictions. It appears therefore that the measured wall shear stress profiles provide 
further evidence of the possible presence of an undetected secondary flow circulation in the tube 
wall region of the test section. 

Figure 10 shows the predicted friction factor characteristic, based on the equivalent (hydraulic) 
diameter, to be in good agreement with the measurements, particularly at the higher Reynolds 
numbers. The slight (3%) overprediction at the lower Reynolds numbers is within the 3-4% error 
band of the measurements quoted by Kacker for the lower Reynolds numbers. The general level of 
friction factor is seen to be a few per cent higher (e.g., 6% higher at Re = lo5) than the circular duct 
measurements of Lawn.30 

CONCLUSIONS 

A detailed comparison has been made between predictions of fully developed turbulent flow from a 
numerical computer-based finite volume procedure calculating the full three-dimensional velocity 
field and previously published measurements for the case of an offset rod in a circular tube. The 
calculation method was based on an orthogonal curvilinear mesh and has been developed for 
general application to arbitrary-shaped ducts, so that no attempt was made to specialize the 
calculations for this particular case in order to improve agreement between predictions and 
measurements. 

Comparisons between predictions and measurements were made for secondary flows and 
secondary velocities, axial velocity contours and profiles, wall shear stress profiles and friction 
factors. Overall agreement between predictions and measurements was found to be satisfactory, 
although there were disagreements in some important details. The predicted cross-plane secondary 
motion was consistent with that expected from previous measurements in other non-circular 
passages, whereas the measurements were not. The indication was of incomplete secondary flow 
measurement, with a second counter-rotating circulation not detected. 

Good agreement between predicted and measured axial velocity profiles, particularly in the gap 
region where it was demonstrated that the levels were very much dependent on secondary 
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convection, provided more evidence of possible secondary motions not detected in the 
measurements. The measured wall shear stress profiles were seen to have slightly less variation 
than the predictions, which implied significant effects from secondary flow convection which acts, 
as discussed earlier, to make wall shear stress more uniform. This was particularly sto in the gap 
region, which gave still further support to the view that incomplete secondary velocity 
measurement could have occurred. 

The indication of possible incomplete measurement of secondary flow obtained from the above 
observations highlights a particular function of the present-day computer-based turbulent flow 
prediction procedures which the present author believes to be one of the most important and 
useful-namely that of supplementing and interpreting measurements. Further evidence of the 
usefulness of the present method in this role has been found in studies of rod bundle passage 
f l o ~ s , ~ ~ 9 ~ ’  an asymmetrically roughened square duct5 and flow and heat transfer in a narrow 
isosceles triangular duct.26 

In many cases the supplementing role could be used to simplify experiments by eliminating the 
need to make detailed measurements of local mean and secondary flow; the prediction procedure 
filling in the detail, using the overall measurements to ensure that the procedure was set up 
properly. The interpreting role can be used to improve the quality and productivity of the 
experiments by keeping a check on the consistancy and plausibility of the measurements when they 
are made. It should be borne in mind of course that the present generation of turbulent flow 
prediction procedures are far from ideal. However, as methods of stress modelling and calculation 
of the region close to the wall improve so as to become less dependent on simplifying assumptions, 
confidence in prediction methods in the above roles can be expected to increase. 
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